

Nanomaterials Science at the Advanced Photon Source

Gabrielle G. Long

Director, X-ray Operations and Research Advanced Photon Source

NNI Workshop on X Rays and Neutrons: Essential tools for nanoscience research

June 17, 2005

X-ray tools for nanomaterials science – emphasis on *in-situ* and real time

- The CNM hard x-ray nanoprobe
 - 20 nm probe
 - Full-field imaging
- Complementary imaging facilities at the APS
 - X-ray excited optical luminescence (XEOL)
 - Soft-x-ray photoemission electron microscopy (PEEM)
 - Scanning fluorescence and scanning nano-diffraction
- Complementary x-ray scattering facilities at the APS
 - X-ray reflectivity
 - SAXS and GISAXS
 - Coherent diffraction ("lensless" imaging)
 - Diffraction under in-situ growth
 - X-ray photon correlated spectroscopy (XPCS)

Polarization dependent imaging

Helicity-dependent X-ray emission provides information concerning spin polarized density of bulk occupied states

•Magnetic contrast:

- Domain imaging
- Ground states in nanoscale systems
- Interactions in particle arrays
- Finite size effects

Chemical contrast

- Self-assembled systems
- Segregation
- Local electronic structure
- Buried layers (~5 nm)

Soft x-ray advantages:

- High magnetic contrast
- Access to TM, RE, semiconductors

Time-resolved Photoemission electron microscopy (PEEM)

- NiFe dots with varying aspect ratios grown on top of a coplanar waveguide
- Apply a time-dependent field synchronized with the storage ring
- The dots respond to a positive to negative field step.
- Follow the domain pattern during the reversal.
- Full reversal of the magnetization in 3.6 ns.

David Keavney and Xifeng Han

Time-resolved X-ray-excited optical luminescence (XEOL)

Excite with photons at the Si K-edge to induce luminescence

Observe relative lifetimes of different bands

T.K. Sham, et al. Phys. Rev. B 70, 045313 (2004)

MCA

PMT

Bunch

Clock

Start

Stop

TAC

Heirarchical self-assembly: not an equilibrated process

Hierarchical self-assembly of metal nanostructures on an ultrathin
 diblock copolymer scaffold
 Lopes & Jaeger, Nature 414, 735 (2001)

- Self-assembly of nanostructure is mostly an art.
- Controlled self-assembly needs to be guided by a thorough understanding of particle diffusion kinetics.
- Diffusion in thin films can be drastically different from that in bulk.
- Understanding the diffusion of nanoscale metal particles in ultrathin polymer films in a confined environments is critical.
- GISAXS using x-ray wave-guides: in-plane motion of nanoparticles

X-ray waveguiding: 1D nanoprobe perpendicular to interfaces

Waveguiding effect: Wang, et al. Science 258, 775 (1992)

Diffusion of Nanoparticles in Ultrathin Films by GISAXS

Real time GISAXS reveals much faster in-plane motion

Guico, Narayanan, Wang, Shull, Macromolecules, **37**, 8357 (2004) Narayanan, Lee, Guico, Sinha, Wang, Phys. Rev. Lett. **94,** 145504 (2005)

X-ray coherent diffraction

J. Miao, et al., *Nature* 400, 342 (1999)

Diffraction pattern from E. Coli bacteria (log scale)

Image reconstructed from diffraction pattern to ~ 30 nm resolution

Fishbone at different mineralization stages

Mineralized Bone (Fish bone particles at different mineralization stages):

- Development and aggregation of calcium apatite nano-crystals in collagen protein matrix during mineralization
- 2. Structural aspect of the mineral phase in bone is poorly understood

Low degree mineralized fish bone and its reconstructed image. The scale bar corresponds to 500 nm

Summary

- Need characterization methods that are effective in real time and in situ
- Showed a few examples
 - PEEM
 - XEOL
 - Resonant enhanced (waveguide) GISAXS